How to build a pipeline
Pipeline Object
Pipeline objects in our system represent ready-to-use AI pipelines that can be invoked for various tasks. Pipeline objects can be created using the aixplain SDK which provides powerful tools to construct pipelines or through Studio for easy editing and quick prototyping.
Examples
Here are quick examples to help you get started.
- Single Model
- Multiple Models
from aixplain.factories.pipeline_factory import PipelineFactory
TRANSLATION_ASSET_ID = '60ddefbe8d38c51c5885f98a'
pipeline = PipelineFactory.init('Translation Pipeline')
input_node = pipeline.input()
translation_node = pipeline.translation(asset_id=TRANSLATION_ASSET_ID)
input_node.link(translation_node, 'input', 'text')
output_node = translation_node.use_output('data')
pipeline.save()
outputs = pipeline.run('This is example text to translate')
print(outputs)
from aixplain.factories.pipeline_factory import PipelineFactory
from aixplain.modules.pipeline.designer import Input
pipeline = PipelineFactory.init("Multi Input-Output Pipeline")
text_input_node = Input(data="text_input", data_types=["TEXT"], pipeline=pipeline)
TRANSLATION_ASSET_ID = '60ddefbe8d38c51c5885f98a'
translation_node = pipeline.translation(asset_id=TRANSLATION_ASSET_ID)
SENTIMENT_ASSET_ID = '61728750720b09325cbcdc36'
sentiment_node = pipeline.sentiment_analysis(asset_id=SENTIMENT_ASSET_ID)
text_input_node.link(translation_node, 'input', 'text')
translation_node.link(sentiment_node, 'data', 'text')
translated_output_node = translation_node.use_output('data')
sentiment_output_node = sentiment_node.use_output('data')
pipeline.save()
outputs = pipeline.run({
'text_input': 'This is example text to translate.'
})
print(outputs)
Instantiating Nodes
You can create a pipeline and instantiate nodes using the code below:
from aixplain.factories.pipeline_factory import PipelineFactory
from aixplain.modules.pipeline.designer import Input
pipeline = PipelineFactory.init("My Pipeline")
input_node = Input(*args, **kwargs)
input_node.attach_to(pipeline)
Alternatively, add nodes to the pipeline using add_node
:
input_node = pipeline.add_node(Input(*args, **kwargs))
You can also pass the pipeline to the node constructor:
input_node = Input(*args, pipeline=pipeline, **kwargs)
Or directly instantiate the node within the pipeline:
input_node = pipeline.input(*args, **kwargs)
Adding Output Nodes
Each pipeline should have at least one input, asset, and output node. You can add output nodes like any other node:
translation_node = pipeline.translation(asset_id=TRANSLATION_ASSET_ID)
output_node = pipeline.output(*args, **kwargs)
translation_node.link(output_node, 'data', 'output')
For nodes implementing the Outputable
mixin, use the shortcut syntax:
output_node = translation_node.use_output('parameter_name_we_are_interested_in')
Asset Nodes and Automatic Population
Asset nodes are used to run models and should have an asset_id
. Once instantiated, an asset node contains all model information and parameters which is populated automatically by interacting with the platform.
translation_node = pipeline.translation(asset_id=TRANSLATION_ASSET_ID)
print(translation_node.inputs)
print(translation_node.outputs)
Handling Parameters
Parameters are accessed via the inputs
and outputs
attributes of the node, behaving as proxy objects to the parameters.
print(translation_node.inputs.text)
print(translation_node.outputs.data)
Add parameters to a node using create_param
on corresponding inputs
or outputs
attributes:
translation_node.inputs.create_param('source_language', DataType.TEXT)
translation_node.outputs.create_param('source_audio', DataType.AUDIO)
Alternatively, instantiate parameters directly using InputParam
or OutputParam
classes:
from aixplain.modules.pipeline.designer import InputParam, OutputParam
source_language = InputParam(
data='source_language',
data_types=DataType.TEXT,
is_required=True,
pipeline=translation_node
)
Or add parameters explicitly:
source_audio = OutputParam(data_types=DataType.AUDIO, data='source_audio')
translation_node.outputs.add_param(source_audio)
In case of need, any parameter value can be set directly without requiring node linking:
translation_node.inputs.text = 'This is example text to translate'
translation_node.inputs.source_language = 'en'
This will implicity set the value
attribute of the parameter object.
Linking Nodes
Link nodes to pass data between them using the link
method. This method links the output of one node to the input of another on specified parameters.
input_node = pipeline.input()
translation_node = pipeline.translation(asset_id=TRANSLATION_ASSET_ID)
input_node.link(translation_node, 'input', 'text')
Specify parameters explicitly:
input_node.link(translation_node, from_param='input', to_param='text')
Or use parameter instances:
input_node.link(translation_node, from_param=input_node.outputs.input, to_param=translation_node.inputs.text)
You can also link parameters directly if you find it more convenient:
input_node.outputs.input.link(translation_node.inputs.text)
Validating the Pipeline
Use the validate
method to ensure the pipeline is valid and ready to run. This method raises an exception if the pipeline has issues.
pipeline.validate()
This method will check the following:
Otherwise raises ValueError
with a cause if the pipeline is not valid.
Save and Run the Pipeline
Save the pipeline before running it. The save
method implicitly calls the validate
method. Use the run
method to execute the pipeline with input data. For more informtation on how to run pipelines, please refer to this guide.
pipeline.save() # Raises an exception if there are semantic issues
outputs = pipeline.run('This is example text to translate')
print(outputs)
Logic Nodes
Router Nodes
A Router node allows you to dynamically redirect the data flow within a pipeline based on conditional logic, allowing different branches of the pipeline to be executed. You can add a condition
based on a logical expression that determines how the data is routed. You can have multiple routing paths based on the input data or results of previous nodes.
router_node = pipeline.router(condition='data == "translate"')
router_node.link(translation_node, 'true_branch', 'input')
router_node.link(sentiment_node, 'false_branch', 'input')
Decision Nodes
Decision Nodes let you make decisons about the next steps in the pipeline based on input data.
decision_node = pipeline.decision(condition='input_value > 0.5')
decision_node.link(node_if_true, 'output', 'input_if_true')
decision_node.link(node_if_false, 'output', 'input_if_false')
Using Metric Models
Metric models can be used to calculate performance metrics to evaluate node outputs.
metric_node = pipeline.metric(metric_id='metric_asset_id')
metric_node.link(model_node, 'output', 'input_metric')
print(metric_node.outputs.score) # Access the computed metric score
Script Nodes
You can add a script node by adding a Python script to modify the output of the incoming nodes. Follow this guide on how to create and use script nodes.
By understanding how to build and customize pipelines, you can now integrate pipelines into aiXplain agents.