module aixplain.modules.benchmark
class Benchmark
Benchmark is a powerful tool for benchmarking machine learning models and evaluating their performance on specific tasks. It represents a collection of Models, Datasets and Metrics to run associated Benchmark Jobs.
Attributes:
id
(str): ID of the Benchmark.name
(str): Name of the Benchmark.model_list
(List[Model]): List of Models to be used for benchmarking.dataset_list
(List[Dataset]): List of Datasets to be used for benchmarking.metric_list
(List[Metric]): List of Metrics to be used for benchmarking.job_list
(List[BenchmarkJob]): List of associated Benchmark Jobs.additional_info
(dict): Any additional information to be saved with the Benchmark.
method __init__
__init__(
id: str,
name: str,
dataset_list: List[Dataset],
model_list: List[Model],
metric_list: List[Metric],
job_list: List[BenchmarkJob],
description: str = '',
supplier: str = 'aiXplain',
version: str = '1.0',
**additional_info
) → None
Create a Benchmark with the necessary information.
Args:
id
(Text): ID of the Benchmark.name
(Text): Name of the Benchmark.model_list
(List[Model]): List of Models to be used for benchmarkingdataset_list
(List[Dataset]): List of Datasets to be used for benchmarkingmetric_list
(List[Metric]): List of Metrics to be used for benchmarkingjob_list
(List[BenchmarkJob]): List of associated Benchmark Jobssupplier
(Text, optional): author of the Benchmark. Defaults to "aiXplain".version
(Text, optional): Benchmark version. Defaults to "1.0".**additional_info
: Any additional Benchmark info to be saved
method start
start() → BenchmarkJob
Starts a new benchmark job(run) for the current benchmark
Returns:
BenchmarkJob
: Benchmark Job that just got started