Python
API Overview
This section serves as a comprehensive table of contents for the aiXplain Python SDK API Reference. It provides an organized overview of all modules, classes, and functions available in the SDK.
Modules
aixplain
: aiXplain SDK Library.aixplain.cli_groups
aixplain.decorators
aixplain.decorators.api_key_checker
aixplain.enums
aixplain.enums.asset_status
aixplain.enums.data_split
aixplain.enums.data_subtype
aixplain.enums.data_type
aixplain.enums.error_handler
aixplain.enums.file_type
aixplain.enums.function
aixplain.enums.language
aixplain.enums.license
aixplain.enums.onboard_status
aixplain.enums.ownership_type
aixplain.enums.privacy
aixplain.enums.response_status
aixplain.enums.sort_by
aixplain.enums.sort_order
aixplain.enums.storage_type
aixplain.enums.supplier
aixplain.factories
: aiXplain SDK Library.aixplain.factories.agent_factory
aixplain.factories.agent_factory.utils
aixplain.factories.api_key_factory
aixplain.factories.asset_factory
aixplain.factories.benchmark_factory
aixplain.factories.corpus_factory
aixplain.factories.data_factory
aixplain.factories.dataset_factory
aixplain.factories.file_factory
aixplain.factories.finetune_factory
aixplain.factories.finetune_factory.prompt_validator
aixplain.factories.metric_factory
aixplain.factories.model_factory
aixplain.factories.model_factory.utils
aixplain.factories.pipeline_factory
aixplain.factories.pipeline_factory.utils
aixplain.factories.script_factory
aixplain.factories.team_agent_factory
aixplain.factories.team_agent_factory.utils
aixplain.factories.wallet_factory
aixplain.modules
: aiXplain SDK Library.aixplain.modules.agent
aixplain.modules.agent.output_format
aixplain.modules.agent.tool
aixplain.modules.agent.tool.model_tool
aixplain.modules.agent.tool.pipeline_tool
aixplain.modules.agent.utils
aixplain.modules.api_key
aixplain.modules.asset
aixplain.modules.benchmark
aixplain.modules.benchmark_job
aixplain.modules.content_interval
aixplain.modules.corpus
aixplain.modules.data
aixplain.modules.dataset
aixplain.modules.file
aixplain.modules.finetune
aixplain.modules.finetune.cost
aixplain.modules.finetune.hyperparameters
aixplain.modules.finetune.status
aixplain.modules.metadata
aixplain.modules.metric
aixplain.modules.model
:aixplain.modules.model.llm_model
aixplain.modules.model.response
aixplain.modules.model.utility_model
: Copyright 2024 The aiXplain SDK authorsaixplain.modules.model.utils
aixplain.modules.pipeline
aixplain.modules.pipeline.asset
aixplain.modules.pipeline.default
aixplain.modules.pipeline.designer
aixplain.modules.pipeline.designer.base
aixplain.modules.pipeline.designer.enums
aixplain.modules.pipeline.designer.mixins
aixplain.modules.pipeline.designer.nodes
aixplain.modules.pipeline.designer.pipeline
aixplain.modules.pipeline.designer.utils
aixplain.modules.pipeline.generate
aixplain.modules.pipeline.pipeline
aixplain.modules.team_agent
aixplain.modules.wallet
aixplain.processes
aixplain.processes.data_onboarding
aixplain.processes.data_onboarding.onboard_functions
aixplain.processes.data_onboarding.process_interval_files
aixplain.processes.data_onboarding.process_media_files
aixplain.processes.data_onboarding.process_text_files
aixplain.utils
: aiXplain SDK Library.aixplain.utils.cache_utils
aixplain.utils.config
: Copyright 2022 The aiXplain SDK authorsaixplain.utils.convert_datatype_utils
: Copyright 2022 The aiXplain SDK authorsaixplain.utils.file_utils
: Copyright 2022 The aiXplain SDK authorsaixplain.utils.request_utils
aixplain.utils.validation_utils
Classes
asset_status.AssetStatus
data_split.DataSplit
data_subtype.DataSubtype
data_type.DataType
error_handler.ErrorHandler
: Enumeration class defining different error handler strategies.file_type.FileType
function.Function
language.Language
license.License
onboard_status.OnboardStatus
ownership_type.OwnershipType
privacy.Privacy
response_status.ResponseStatus
sort_by.SortBy
sort_order.SortOrder
storage_type.StorageType
supplier.Supplier
agent_factory.AgentFactory
api_key_factory.APIKeyFactory
asset_factory.AssetFactory
benchmark_factory.BenchmarkFactory
: A static class for creating and managing the Benchmarking experience.corpus_factory.CorpusFactory
data_factory.DataFactory
: A static class for creating and exploring Dataset Objects.dataset_factory.DatasetFactory
: A static class for creating and exploring Dataset Objects.file_factory.FileFactory
finetune_factory.FinetuneFactory
: A static class for creating and managing the FineTune experience.metric_factory.MetricFactory
: A static class for creating and exploring Metric Objects.model_factory.ModelFactory
: A static class for creating and exploring Model Objects.pipeline_factory.PipelineFactory
: A static class for creating and exploring Pipeline Objects.script_factory.ScriptFactory
team_agent_factory.TeamAgentFactory
wallet_factory.WalletFactory
agent.Agent
: Advanced AI system capable of performing tasks by leveraging specialized software tools and resources from aiXplain marketplace.output_format.OutputFormat
tool.Tool
: Specialized software or resource designed to assist the AI in executing specific tasks or functions based on user commands.model_tool.ModelTool
: Specialized software or resource designed to assist the AI in executing specific tasks or functions based on user commands.pipeline_tool.PipelineTool
: Specialized software or resource designed to assist the AI in executing specific tasks or functions based on user commands.api_key.APIKey
api_key.APIKeyLimits
api_key.APIKeyUsageLimit
asset.Asset
benchmark.Benchmark
: Benchmark is a powerful tool for benchmarking machine learning models and evaluating their performance on specific tasks.benchmark_job.BenchmarkJob
: Benchmark Job Represents a single run of an already created Benchmark.content_interval.AudioContentInterval
: AudioContentInterval(content: str, content_id: int, start_time: float, end_time: float)content_interval.ContentInterval
: ContentInterval(content: str, content_id: int)content_interval.ImageContentInterval
: ImageContentInterval(content: str, content_id: int, x: Union[float, List[float]], y: Union[float, List[float]], width: Optional[float] = None, height: Optional[float] = None, rotation: Optional[float] = None)content_interval.TextContentInterval
: TextContentInterval(content: str, content_id: int, start: Union[int, Tuple[int, int]], end: Union[int, Tuple[int, int]])content_interval.VideoContentInterval
: VideoContentInterval(content: str, content_id: int, start_time: float, end_time: float, x: Union[float, List[float], NoneType] = None, y: Union[float, List[float], NoneType] = None, width: Optional[float] = None, height: Optional[float] = None, rotation: Optional[float] = None)corpus.Corpus
data.Data
dataset.Dataset
: Dataset is a collection of data intended to be used for a specific function.file.File
finetune.Finetune
: FineTune is a powerful tool for fine-tuning machine learning models and using your own datasets for specific tasks.cost.FinetuneCost
hyperparameters.Hyperparameters
: Hyperparameters(epochs: int = 1, train_batch_size: int = 4, eval_batch_size: int = 4, learning_rate: float = 1e-05, max_seq_length: int = 4096, warmup_ratio: float = 0.0, warmup_steps: int = 0, lr_scheduler_type: aixplain.modules.finetune.hyperparameters.SchedulerType = <SchedulerType.LINEAR: 'linear'>)hyperparameters.SchedulerType
status.FinetuneStatus
: FinetuneStatus(status: 'AssetStatus', model_status: 'AssetStatus', epoch: Optional[float] = None, training_loss: Optional[float] = None, validation_loss: Optional[float] = None)metadata.MetaData
metric.Metric
: Represents a metric to be computed on one or more peices of data. It is usually linked to a machine learning task.model.Model
: This is ready-to-use AI model. This model can be run in both synchronous and asynchronous manner.llm_model.LLM
: Ready-to-use LLM model. This model can be run in both synchronous and asynchronous manner.response.ModelResponse
: ModelResponse class to store the response of the model run.utility_model.UtilityModel
: Ready-to-use Utility Model.utility_model.UtilityModelInput
: UtilityModelInput(name: str, description: str, type: aixplain.enums.data_type.DataType = <DataType.TEXT: 'text'>)asset.Pipeline
: Representing a custom pipeline that was created on the aiXplain Platformdefault.DefaultPipeline
base.InputParam
base.Inputs
base.Link
: Link class, this class will be used to link the output of the node to thebase.Node
: Node class is the base class for all the nodes in the pipeline. This classbase.OutputParam
base.Outputs
base.Param
: Param class, this class will be used to create the parameters of the node.base.ParamProxy
base.Serializable
enums.AssetType
enums.FunctionType
enums.NodeType
enums.Operation
enums.ParamType
enums.RouteType
mixins.LinkableMixin
: Linkable mixin class, this class will be used to link the output of themixins.OutputableMixin
: Outputable mixin class, this class will be used to link the output of themixins.RoutableMixin
: Routable mixin class, this class will be used to route the input data tonodes.AssetNode
: Asset node class, this node will be used to fetch the asset from thenodes.BareAsset
nodes.BareAssetInputs
nodes.BareAssetOutputs
nodes.BareMetric
nodes.BareReconstructor
: Reconstructor node class, this node will be used to reconstruct thenodes.BareSegmentor
: Segmentor node class, this node will be used to segment the input datanodes.BaseMetric
nodes.BaseReconstructor
: Reconstructor node class, this node will be used to reconstruct thenodes.BaseSegmentor
: Segmentor node class, this node will be used to segment the input datanodes.Decision
: Decision node class, this node will be used to make decisions based onnodes.DecisionInputs
nodes.DecisionOutputs
nodes.Input
: Input node class, this node will be used to input the data to thenodes.InputInputs
nodes.InputOutputs
nodes.MetricInputs
nodes.MetricOutputs
nodes.Output
: Output node class, this node will be used to output the result of thenodes.OutputInputs
nodes.OutputOutputs
nodes.ReconstructorInputs
nodes.ReconstructorOutputs
nodes.Route
: Route class, this class will be used to route the input data to differentnodes.Router
: Router node class, this node will be used to route the input data tonodes.RouterInputs
nodes.RouterOutputs
nodes.Script
: Script node class, this node will be used to run a script on the inputnodes.SegmentorInputs
nodes.SegmentorOutputs
pipeline.DesignerPipeline
pipeline.AsrAgeClassification
: The ASR Age Classification function is designed to analyze audio recordings ofpipeline.AsrAgeClassificationInputs
pipeline.AsrAgeClassificationOutputs
pipeline.AsrGenderClassification
: The ASR Gender Classification function analyzes audio recordings to determinepipeline.AsrGenderClassificationInputs
pipeline.AsrGenderClassificationOutputs
pipeline.AsrQualityEstimation
: ASR Quality Estimation is a process that evaluates the accuracy and reliabilitypipeline.AsrQualityEstimationInputs
pipeline.AsrQualityEstimationOutputs
pipeline.AudioEmotionDetection
: Audio Emotion Detection is a technology that analyzes vocal characteristics andpipeline.AudioEmotionDetectionInputs
pipeline.AudioEmotionDetectionOutputs
pipeline.AudioForcedAlignment
: Audio Forced Alignment is a process that synchronizes a given audio recordingpipeline.AudioForcedAlignmentInputs
pipeline.AudioForcedAlignmentOutputs
pipeline.AudioGenerationMetric
: The Audio Generation Metric is a quantitative measure used to evaluate thepipeline.AudioGenerationMetricInputs
pipeline.AudioGenerationMetricOutputs
pipeline.AudioIntentDetection
: Audio Intent Detection is a process that involves analyzing audio signals topipeline.AudioIntentDetectionInputs
pipeline.AudioIntentDetectionOutputs
pipeline.AudioLanguageIdentification
: Audio Language Identification is a process that involves analyzing an audiopipeline.AudioLanguageIdentificationInputs
pipeline.AudioLanguageIdentificationOutputs
pipeline.AudioReconstruction
: Audio Reconstruction is the process of restoring or recreating audio signalspipeline.AudioReconstructionInputs
pipeline.AudioReconstructionOutputs
pipeline.AudioTranscriptAnalysis
: Audio Transcript Analysis is a process that involves converting spoken languagepipeline.AudioTranscriptAnalysisInputs
pipeline.AudioTranscriptAnalysisOutputs
pipeline.AudioTranscriptImprovement
: Audio Transcript Improvement is a function that enhances the accuracy andpipeline.AudioTranscriptImprovementInputs
pipeline.AudioTranscriptImprovementOutputs
pipeline.BaseModel
: The Base-Model function serves as a foundational framework designed to providepipeline.BaseModelInputs
pipeline.BaseModelOutputs
pipeline.BenchmarkScoringAsr
: Benchmark Scoring ASR is a function that evaluates and compares the performancepipeline.BenchmarkScoringAsrInputs
pipeline.BenchmarkScoringAsrOutputs
pipeline.BenchmarkScoringMt
: Benchmark Scoring MT is a function designed to evaluate and score machinepipeline.BenchmarkScoringMtInputs
pipeline.BenchmarkScoringMtOutputs
pipeline.ClassificationMetric
: A Classification Metric is a quantitative measure used to evaluate the qualitypipeline.ClassificationMetricInputs
pipeline.ClassificationMetricOutputs
pipeline.DepthEstimation
: Depth estimation is a computational process that determines the distance ofpipeline.DepthEstimationInputs
pipeline.DepthEstimationOutputs
pipeline.Diacritization
: Diacritization is the process of adding diacritical marks to letters in a textpipeline.DiacritizationInputs
pipeline.DiacritizationOutputs
pipeline.DialectDetection
: Dialect Detection is a function that identifies and classifies the specificpipeline.DialectDetectionInputs
pipeline.DialectDetectionOutputs
pipeline.DocumentImageParsing
: Document Image Parsing is the process of analyzing and converting scanned orpipeline.DocumentImageParsingInputs
pipeline.DocumentImageParsingOutputs
pipeline.DocumentInformationExtraction
: Document Information Extraction is the process of automatically identifying,pipeline.DocumentInformationExtractionInputs
pipeline.DocumentInformationExtractionOutputs
pipeline.EmotionDetection
: Emotion Detection is a process that involves analyzing text to identify andpipeline.EmotionDetectionInputs
pipeline.EmotionDetectionOutputs
pipeline.EntityLinking
: Entity Linking is the process of identifying and connecting mentions ofpipeline.EntityLinkingInputs
pipeline.EntityLinkingOutputs
pipeline.ExtractAudioFromVideo
: The "Extract Audio From Video" function allows users to separate and save thepipeline.ExtractAudioFromVideoInputs
pipeline.ExtractAudioFromVideoOutputs
pipeline.FactChecking
: Fact Checking is the process of verifying the accuracy and truthfulness ofpipeline.FactCheckingInputs
pipeline.FactCheckingOutputs
pipeline.FillTextMask
: The "Fill Text Mask" function takes a text input with masked or placeholderpipeline.FillTextMaskInputs
pipeline.FillTextMaskOutputs
pipeline.ImageCaptioning
: Image Captioning is a process that involves generating a textual description ofpipeline.ImageCaptioningInputs
pipeline.ImageCaptioningOutputs
pipeline.ImageColorization
: Image colorization is a process that involves adding color to grayscale images,pipeline.ImageColorizationInputs
pipeline.ImageColorizationOutputs
pipeline.ImageCompression
: Image compression is a process that reduces the file size of an image bypipeline.ImageCompressionInputs
pipeline.ImageCompressionOutputs
pipeline.ImageContentModeration
: Image Content Moderation is a process that involves analyzing and filteringpipeline.ImageContentModerationInputs
pipeline.ImageContentModerationOutputs
pipeline.ImageEmbedding
: Image Embedding is a process that transforms an image into a fixed-dimensionalpipeline.ImageEmbeddingInputs
pipeline.ImageEmbeddingOutputs
pipeline.ImageImpainting
: Image inpainting is a process that involves filling in missing or damaged partspipeline.ImageImpaintingInputs
pipeline.ImageImpaintingOutputs
pipeline.ImageLabelDetection
: Image Label Detection is a function that automatically identifies and assignspipeline.ImageLabelDetectionInputs
pipeline.ImageLabelDetectionOutputs
pipeline.ImageManipulation
: Image Manipulation refers to the process of altering or enhancing digitalpipeline.ImageManipulationInputs
pipeline.ImageManipulationOutputs
pipeline.ImageToVideoGeneration
: The Image To Video Generation function transforms a series of static imagespipeline.ImageToVideoGenerationInputs
pipeline.ImageToVideoGenerationOutputs
pipeline.InstanceSegmentation
: Instance segmentation is a computer vision task that involves detecting andpipeline.InstanceSegmentationInputs
pipeline.InstanceSegmentationOutputs
pipeline.IntentClassification
: Intent Classification is a natural language processing task that involvespipeline.IntentClassificationInputs
pipeline.IntentClassificationOutputs
pipeline.InverseTextNormalization
: Inverse Text Normalization is the process of converting spoken or writtenpipeline.InverseTextNormalizationInputs
pipeline.InverseTextNormalizationOutputs
pipeline.KeywordSpotting
: Keyword Spotting is a function that enables the detection and identification ofpipeline.KeywordSpottingInputs
pipeline.KeywordSpottingOutputs
pipeline.LanguageIdentification
: Language Identification is the process of automatically determining thepipeline.LanguageIdentificationAudio
: The Language Identification Audio function analyzes audio input to determinepipeline.LanguageIdentificationAudioInputs
pipeline.LanguageIdentificationAudioOutputs
pipeline.LanguageIdentificationInputs
pipeline.LanguageIdentificationOutputs
pipeline.Loglikelihood
: The Log Likelihood function measures the probability of observing the givenpipeline.LoglikelihoodInputs
pipeline.LoglikelihoodOutputs
pipeline.MetricAggregation
: Metric Aggregation is a function that computes and summarizes numerical data bypipeline.MetricAggregationInputs
pipeline.MetricAggregationOutputs
pipeline.MultiClassImageClassification
: Multi Class Image Classification is a machine learning task where an algorithmpipeline.MultiClassImageClassificationInputs
pipeline.MultiClassImageClassificationOutputs
pipeline.MultiClassTextClassification
: Multi Class Text Classification is a natural language processing task thatpipeline.MultiClassTextClassificationInputs
pipeline.MultiClassTextClassificationOutputs
pipeline.MultiLabelTextClassification
: Multi Label Text Classification is a natural language processing task where apipeline.MultiLabelTextClassificationInputs
pipeline.MultiLabelTextClassificationOutputs
pipeline.MultilingualSpeechRecognition
: Multilingual Speech Recognition is a technology that enables the automaticpipeline.MultilingualSpeechRecognitionInputs
pipeline.MultilingualSpeechRecognitionOutputs
pipeline.NamedEntityRecognition
: Named Entity Recognition (NER) is a natural language processing task thatpipeline.NamedEntityRecognitionInputs
pipeline.NamedEntityRecognitionOutputs
pipeline.NoiseRemoval
: Noise Removal is a process that involves identifying and eliminating unwantedpipeline.NoiseRemovalInputs
pipeline.NoiseRemovalOutputs
pipeline.ObjectDetection
: Object Detection is a computer vision technology that identifies and locatespipeline.ObjectDetectionInputs
pipeline.ObjectDetectionOutputs
pipeline.Ocr
: OCR, or Optical Character Recognition, is a technology that converts differentpipeline.OcrInputs
pipeline.OcrOutputs
pipeline.OffensiveLanguageIdentification
: Offensive Language Identification is a function that analyzes text to detectpipeline.OffensiveLanguageIdentificationInputs
pipeline.OffensiveLanguageIdentificationOutputs
pipeline.OtherMultipurpose
: The "Other (Multipurpose)" function serves as a versatile category designed topipeline.OtherMultipurposeInputs
pipeline.OtherMultipurposeOutputs
pipeline.PartOfSpeechTagging
: Part of Speech Tagging is a natural language processing task that involvespipeline.PartOfSpeechTaggingInputs
pipeline.PartOfSpeechTaggingOutputs
pipeline.Pipeline
pipeline.ReferencelessAudioGenerationMetric
: The Referenceless Audio Generation Metric is a tool designed to evaluate thepipeline.ReferencelessAudioGenerationMetricInputs
pipeline.ReferencelessAudioGenerationMetricOutputs
pipeline.ReferencelessTextGenerationMetric
: The Referenceless Text Generation Metric is a method for evaluating the qualitypipeline.ReferencelessTextGenerationMetricDefault
: The Referenceless Text Generation Metric Default is a function designed topipeline.ReferencelessTextGenerationMetricDefaultInputs
pipeline.ReferencelessTextGenerationMetricDefaultOutputs
pipeline.ReferencelessTextGenerationMetricInputs
pipeline.ReferencelessTextGenerationMetricOutputs
pipeline.ScriptExecution
: Script Execution refers to the process of running a set of programmedpipeline.ScriptExecutionInputs
pipeline.ScriptExecutionOutputs
pipeline.Search
: The "Search" function allows users to input keywords or phrases to quicklypipeline.SearchInputs
pipeline.SearchOutputs
pipeline.SemanticSegmentation
: Semantic segmentation is a computer vision process that involves classifyingpipeline.SemanticSegmentationInputs
pipeline.SemanticSegmentationOutputs
pipeline.SentimentAnalysis
: Sentiment Analysis is a natural language processing technique used to determinepipeline.SentimentAnalysisInputs
pipeline.SentimentAnalysisOutputs
pipeline.SpeakerDiarizationAudio
: Speaker Diarization Audio is a process that involves segmenting an audiopipeline.SpeakerDiarizationAudioInputs
pipeline.SpeakerDiarizationAudioOutputs
pipeline.SpeakerDiarizationVideo
: The Speaker Diarization Video function identifies and segments differentpipeline.SpeakerDiarizationVideoInputs
pipeline.SpeakerDiarizationVideoOutputs
pipeline.SpeechClassification
: Speech Classification is a process that involves analyzing and categorizingpipeline.SpeechClassificationInputs
pipeline.SpeechClassificationOutputs
pipeline.SpeechEmbedding
: Speech Embedding is a process that transforms spoken language into a fixed-pipeline.SpeechEmbeddingInputs
pipeline.SpeechEmbeddingOutputs
pipeline.SpeechNonSpeechClassification
: The function "Speech or Non-Speech Classification" is designed to analyze audiopipeline.SpeechNonSpeechClassificationInputs
pipeline.SpeechNonSpeechClassificationOutputs
pipeline.SpeechRecognition
: Speech recognition is a technology that enables a computer or device topipeline.SpeechRecognitionInputs
pipeline.SpeechRecognitionOutputs
pipeline.SpeechSynthesis
: Speech synthesis is the artificial production of human speech, typicallypipeline.SpeechSynthesisInputs
pipeline.SpeechSynthesisOutputs
pipeline.SpeechTranslation
: Speech Translation is a technology that converts spoken language in real-timepipeline.SpeechTranslationInputs
pipeline.SpeechTranslationOutputs
pipeline.SplitOnLinebreak
: The "Split On Linebreak" function divides a given string into a list ofpipeline.SplitOnLinebreakInputs
pipeline.SplitOnLinebreakOutputs
pipeline.SplitOnSilence
: The "Split On Silence" function divides an audio recording into separatepipeline.SplitOnSilenceInputs
pipeline.SplitOnSilenceOutputs
pipeline.StyleTransfer
: Style Transfer is a technique in artificial intelligence that applies thepipeline.StyleTransferInputs
pipeline.StyleTransferOutputs
pipeline.Subtitling
: Subtitling is the process of displaying written text on a screen to representpipeline.SubtitlingInputs
pipeline.SubtitlingOutputs
pipeline.SubtitlingTranslation
: Subtitling Translation is the process of converting spoken dialogue from onepipeline.SubtitlingTranslationInputs
pipeline.SubtitlingTranslationOutputs
pipeline.TextClassification
: Text Classification is a natural language processing task that involvespipeline.TextClassificationInputs
pipeline.TextClassificationOutputs
pipeline.TextContentModeration
: Text Content Moderation is the process of reviewing, filtering, and managingpipeline.TextContentModerationInputs
pipeline.TextContentModerationOutputs
pipeline.TextDenormalization
: Text Denormalization is the process of converting abbreviated, contracted, orpipeline.TextDenormalizationInputs
pipeline.TextDenormalizationOutputs
pipeline.TextEmbedding
: Text embedding is a process that converts text into numerical vectors,pipeline.TextEmbeddingInputs
pipeline.TextEmbeddingOutputs
pipeline.TextGeneration
: Text Generation is a process in which artificial intelligence models, such aspipeline.TextGenerationInputs
pipeline.TextGenerationMetric
: A Text Generation Metric is a quantitative measure used to evaluate the qualitypipeline.TextGenerationMetricDefault
: The "Text Generation Metric Default" function provides a standard set ofpipeline.TextGenerationMetricDefaultInputs
pipeline.TextGenerationMetricDefaultOutputs
pipeline.TextGenerationMetricInputs
pipeline.TextGenerationMetricOutputs
pipeline.TextGenerationOutputs
pipeline.TextNormalization
: Text normalization is the process of transforming text into a standard,pipeline.TextNormalizationInputs
pipeline.TextNormalizationOutputs
pipeline.TextReconstruction
: Text Reconstruction is a process that involves piecing together fragmented orpipeline.TextReconstructionInputs
pipeline.TextReconstructionOutputs
pipeline.TextSegmenation
: Text Segmentation is the process of dividing a continuous text into meaningfulpipeline.TextSegmenationInputs
pipeline.TextSegmenationOutputs
pipeline.TextSpamDetection
: Text Spam Detection is a process that involves analyzing and identifyingpipeline.TextSpamDetectionInputs
pipeline.TextSpamDetectionOutputs
pipeline.TextSummarization
: Text summarization is the process of condensing a large body of text into apipeline.TextSummarizationInputs
pipeline.TextSummarizationOutputs
pipeline.TextToAudio
: The Text to Audio function converts written text into spoken words, allowingpipeline.TextToAudioInputs
pipeline.TextToAudioOutputs
pipeline.TextToImageGeneration
: Text To Image Generation is a process where a system creates visual imagespipeline.TextToImageGenerationInputs
pipeline.TextToImageGenerationOutputs
pipeline.TextToVideoGeneration
: Text To Video Generation is a process that converts written descriptions orpipeline.TextToVideoGenerationInputs
pipeline.TextToVideoGenerationOutputs
pipeline.TopicClassification
: Topic Classification is a natural language processing function that categorizespipeline.TopicClassificationInputs
pipeline.TopicClassificationOutputs
pipeline.Translation
: Translation is the process of converting text from one language into anpipeline.TranslationInputs
pipeline.TranslationOutputs
pipeline.VideoContentModeration
: Video Content Moderation is the process of reviewing, analyzing, and filteringpipeline.VideoContentModerationInputs
pipeline.VideoContentModerationOutputs
pipeline.VideoEmbedding
: Video Embedding is a process that transforms video content into a fixed-pipeline.VideoEmbeddingInputs
pipeline.VideoEmbeddingOutputs
pipeline.VideoForcedAlignment
: Video Forced Alignment is a process that synchronizes video footage withpipeline.VideoForcedAlignmentInputs
pipeline.VideoForcedAlignmentOutputs
pipeline.VideoGeneration
: Video Generation is the process of creating video content through automated orpipeline.VideoGenerationInputs
pipeline.VideoGenerationOutputs
pipeline.VideoLabelDetection
: Video Label Detection is a function that automatically identifies and tagspipeline.VideoLabelDetectionInputs
pipeline.VideoLabelDetectionOutputs
pipeline.VideoUnderstanding
: Video Understanding is the process of analyzing and interpreting video contentpipeline.VideoUnderstandingInputs
pipeline.VideoUnderstandingOutputs
pipeline.VisemeGeneration
: Viseme Generation is the process of creating visual representations ofpipeline.VisemeGenerationInputs
pipeline.VisemeGenerationOutputs
pipeline.VisualQuestionAnswering
: Visual Question Answering (VQA) is a task in artificial intelligence thatpipeline.VisualQuestionAnsweringInputs
pipeline.VisualQuestionAnsweringOutputs
pipeline.VoiceActivityDetection
: Voice Activity Detection (VAD) is a technology that identifies the presence orpipeline.VoiceActivityDetectionInputs
pipeline.VoiceActivityDetectionOutputs
pipeline.VoiceCloning
: Voice cloning is a technology that uses artificial intelligence to create apipeline.VoiceCloningInputs
pipeline.VoiceCloningOutputs
team_agent.TeamAgent
: Advanced AI system capable of using multiple agents to perform a variety of tasks.wallet.Wallet
Functions
cli_groups.run_cli
api_key_checker.check_api_key
function.load_functions
language.load_languages
license.load_licenses
supplier.clean_name
supplier.load_suppliers
utils.build_agent
: Instantiate a new agent in the platform.prompt_validator.validate_prompt
utils.create_model_from_response
: Converts response Json to 'Model' objectutils.get_assets_from_page
utils.build_from_response
: Converts response Json to 'Pipeline' objectutils.build_team_agent
: Instantiate a new team agent in the platform.utils.process_variables
utils.build_payload
utils.call_run_endpoint
utils.parse_code
utils.find_prompt_params
: This method will find the prompt parameters in the prompt string.generate.fetch_functions
: Fetch functions from the backendgenerate.populate_data_types
: Populate the data typesgenerate.populate_specs
: Populate the function class specsonboard_functions.build_payload_corpus
: Create corpus payload to call coreengine on the onboard processonboard_functions.build_payload_data
: Create data payload to call coreengine on Corpus/Dataset onboardonboard_functions.build_payload_dataset
: Generate onboard payload to coreengineonboard_functions.create_data_asset
: Service to call onboard process in coreengineonboard_functions.get_paths
: Recursively access all local paths. Check if file extensions are supported.onboard_functions.is_data
: Check whether reference data existsonboard_functions.process_data_files
: Process a list of local files, compress and upload them to pre-signed URLs in S3onboard_functions.split_data
: Split the data according to some split labels and rateprocess_interval_files.compress_folder
process_interval_files.process_interval
: Process text filesprocess_interval_files.run
: Process a list of local interval files, compress and upload them to pre-signed URLs in S3process_interval_files.validate_format
: Validate the interval formatprocess_media_files.compress_folder
process_media_files.run
: Process a list of local media files, compress and upload them to pre-signed URLs in S3process_text_files.process_text
: Process text filesprocess_text_files.run
: Process a list of local textual files, compress and upload them to pre-signed URLs in S3cache_utils.load_from_cache
cache_utils.save_to_cache
convert_datatype_utils.dict_to_metadata
: Convert all the Dicts to MetaDatafile_utils.download_data
file_utils.s3_to_csv
: Convert s3 url to a csv file and download the file indownload_path
file_utils.save_file
: Download and save file from given URLfile_utils.upload_data
: Upload files to S3 with pre-signed URLsvalidation_utils.dataset_onboarding_validation
: Dataset Onboard Validation